ReverseDiffSource Documentation
Release 0.1

Frédéric Testard

October 31, 2016

Contents

Installation

The main function : rdiff ()

2.1 ATgUMENES . . . oL e e e e e e e e e e e e e e e e e
2.2 OUPUL .« . o e e e e e e e
2.3 USAZE . v v v e e e e e e e e e e e e e e e e e
24 LImitations e e e e e e e e e e e e e e e

Calling rdiff () with a function

31 ATZUMENES . . . L e
3.2 OUPUL « . v e e e e e e e e e e e e e e
33 USAZE .« v v e e e e e e e e e e e
3.4 LIMItations o v i e e e e e e e e e e e e e e e e e e e

Defining new functions : @deriv_rule ()

4.1 Arguments . . oL L. e e e e e e
42 USage . . . o e e e e e
43 Example e e

Working with composite types

ReverseDiffSource internals
6.1 Showingthecode graph L e

Indices and tables

13

15
15

19

ReverseDiffSource Documentation, Release 0.1

Contents:

Contents 1

ReverseDiffSource Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

Install the ReverseDiffSource package at the Julia command line by running:

Pkg.add ("ReverseDiffSource")

This only needs to be done once.

ReverseDiffSource has currently no dependency with other packages. However there is a graphical representa-
tion function plot () that produces a text string in the GraphViz syntax. To produce the plot, you will have to install
GraphViz with Pkg. add.

Now for each Julia session where ReverseDiffSource is needed, load it with the usual:

using ReverseDiffSource

You are now ready to go !

ReverseDiffSource Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

The main function : rdiff ()

The differentiation function is called rdiff () and is called with the following parameters:

’rdiff(ex::Expr; outsym::Symbol; order::Int, init...)

2.1 Arguments

ex is a Julia Expression containing the code to derive

outsym (default = nothing) is the symbol of the variable within ex containing the expression output
(the result whose derivatives are needed). This variable must evaluate to a Real. If not specified,
out symdefaults to nothing which signals to rdi f £ that the last statement is the result of interest
for derivation.

order (default=1) is an integer indicating the derivation order (1 for 1st order, etc.). Order O is allowed
and will produce an expression that is a processed version of ex with some variables names rewritten
and possibly some optimizations.

init (multiple keyword arguments) is one or several symbol / DataType pairs used to indicate for which
variable a derivative is needed and how they should be interpreted. By default the generated ex-
pression will yield the derivative for each variable given unless the variable is listed in the ignore
argument.

evalmod (default=Main) module where the expression is meant to be evaluated. External variables and
functions should be evaluable in this module.

debug (default=false) indicates if rdi £ £ should dump the graph of the generating expression, instead of
returning the expression itself.

allorders (default=true) indicates whether to generate the code for all orders up to order (true) or only
the last order.

ignore (default=[]) do not differentiate against the listed variables, useful if you are not interested in
having the derivative of one of several variables in init.

2.2 Output

An expression which, when evaluated, will return a tuple containing the expression value and the derivative at first,
second , etc.. order.

ReverseDiffSource Documentation, Release 0.1

2.3 Usage

rdiff takes an expression consisting of a subset of Julia statements (assignments, getindex, setindex!, for loops,
function calls) and transforms it into a new expression whose evaluation will provide the derivatives at all orders
between 0 and the order specified (unless allorders is false).

The generated expression will attempt to remove all unneeded calculations (e.g. x + 0) and factorize repeated function
calls as much as possible.

All the variables appearing in the init argument are considered as the expression’s arguments and a derivative is
calculated for it (and cross derivatives if order is >= 2), unless they are listed in the ‘‘ignore‘‘ argument. The other
variables, if not defined by the expression, are expected to be top level variables in evalmod. If they are not defined
there an error will be thrown.

For orders >= 2 only a single variable, of type Real or Vector, is allowed. For orders 0 and 1 variables can be of type
Real, Vector or Matrix and can be in an unlimited number:

julia> rdiff(:(x"3) , x=Float64) # first order
: (begin

(x73,3 » x72.0)

end)
julia> rdiff(:(x"3) , order=3, x=Float64) # orders up to 3
: (begin

(x"3,3 » x*2.0,2.0 (x » 3),6.0)
end)

rdiff runs several simplification heuristics on the generated code to remove neutral statements and factorize repeated
calculations. For instance calculating the derivatives of sin (x) for large orders will reduce to the calculations of
sin(x) and cos (x):

julia> rdiff(:(sin(x)) , order=10, x=Float64) # derivatives up to order 10
: (begin

_tmpl = sin(x)

_tmp2 = cos(x)

_tmp3 = —_tmpl

_tmpd = —_tmp2

_tmp5 = —_tmp3

(_tmpl, _tmp2,_tmp3,_tmp4,_tmpb5,_tmp2,_tmp3,_tmp4,_tmp5,_tmp2,_tmp3)
end)

The expression produced can easily be turned into a function with the @eval macro:

julia> res = rdiff(:(sin(x)) , order=10, x=Float64)
julia> Qeval foo(x) = S$res

julia> foo(2.)
(0.9092974268256817,-0.4161468365471424,-0.9092974268256817,0.4161468365471424,0.9092974268256817,-0

When a second derivative expression is needed, only a single derivation variable is allowed. If you are dealing with a
function of several (scalar) variables you will have you aggregate them into a vector:

julia> ex = :((1 - x[1])"2 + 100(x[2] - x[1]"2)"2) # the rosenbrock function
julia> res = rdiff (ex, x=Vector{Float64}, order=2)
: (begin

_tmpl =1

_tmp2 = 2

_tmp3 = 100.0
_tmp4 _tmpl - x[_tmpl]
_tmpb5 length (x)

6 Chapter 2. The main function : rdiff ()

ReverseDiffSource Documentation, Release 0.1

_tmp6 = zeros(size(x))
_tmp7 = x[_tmp2] - x[_tmpl] * _tmp2
_tmp8 = zeros ((_tmp5,_tmpb))
_tmp9 = _tmp2 * (_tmp7 * _tmp3)
_tmpl0 = —_tmp9
_tmp6[_tmpl] = _tmp6[_tmpl] + (_tmp2 x (x[_tmpl] * _tmpl0) + —(_tmp2 % _tmp4))
_tmp6[_tmp2] = _tmp6[_tmp2] + _tmp9
for _idxl = _tmpl:_tmp5
_tmpll = zeros(size (_tmp6))
_tmpl2 = zeros(size(x))
_tmpll[_idx1l] = _tmpll[_idx1l] + 1.0
_tmpl3 = _tmpll][tmpZ]
_tmpll[_tmp2] = 0.0
_tmpll[_tmp2] = _tmpll[_tmp2] + _tmpl3
_tmpld = _tmp2 x _tmpll[_tmpl]
_tmpl5 = _tmp3 * (_tmp2 * (_tmpl3 + —(x[_tmpl] » _tmpl4d)))
_tmpl2[_tmpl] = _tmpl2[_tmpl] + ((_tmpl0 x _tmpld + _tmp2 * (x[_tmpl] * —_tmpl5)
_tmpl2[_tmp2] = _tmpl2[_tmp2] + _tmplb
_tmp8[(_idxl - 1) » _tmp5 + 1:_idxl » _tmp5] = _tmpl2
end
(_tmp4 ~ _tmp2 + 100 x _tmp7 ~ _tmp2,_tmp6,_tmp8)
end)
julia> @eval foo(x) = Sres

julia> foo([0.5, 2.])
(306.5,[-351.0,350.01,
2x2 Array{Float64,2}:

-498.0 -200.0

-200.0 200.0)

foo (x) returns a tuple containing respectively the value of the expression at x, the gradient (a 2-vector) and the
hessian (a 2x2 matrix)

2.4 Limitations

* The canonical implementation of for loops derivation in reverse accumulation requires the caching of the
complete state of each iteration which makes the generated code complex and memory intensive. The current
algorithm uses a simpler approach that limits the kind of loops that can be correctly derived : in short, loops
should not have any kind of recursivity in them (the calculations of each iteration should not depend on the
calculations of previous iterations):

will work
for 1 in 1:n

a = f(x[1i])
b =a+ g(yl[il])
cli] = b

end

will (probably) not work
for 1 in 1:n

c[i] = £(cl[i-1])
end

However simple accumulations are an instance of recursive calculations that will work:

will work

for i in 1:n

2.4. Limitations 7

+ —(_tmp2

ReverseDiffSource Documentation, Release 0.1

a += b[1] # new a value depends on previous a

e for loops are limited to a single index. If you have a for i,3j in 1:10, 1:10 in your expression you
will have to translate it to nested loops as a workaround

 All variables should be type-stable (not change from a scalar to a vector for example).

* Only a limited set of Julia semantics are supported at this stage. Some frequently used statements such as
comprehensions, 1f else, while loops cannot be used in the expression.

* Mutating functions cannot be used (with the exception of setindex! and setfield!).

8 Chapter 2. The main function : rdiff ()

CHAPTER 3

Calling rdiff () with a function

Calling syntax:

’ rdiff(func::Function, init::Tuple; order::Int)

3.1 Arguments

func is a Julia generic function.

init is a tuple containing the types for each parameter of func. These types are necessary to pick a the
right method of the given function. By default the generated expression will yield the derivative for
each variable given unless the variable is listed in the 1ignore argument.

order (keyword arg, default = 1) is an integer indicating the derivation order (1 for 1st order, etc.). Order
0 is allowed and will produce a function that is a processed version of ex with some variables names
rewritten and possibly some optimizations.

evalmod (default=Main) module where the expression is meant to be evaluated. External variables and
functions should be evaluable in this module.

debug (default=false) if true rdi f £ dumps the graph of the generating expression, instead of the expres-
sion.

allorders (default=true) tells rdiff whether to generate the code for all orders up to order (true) or only
the last order.

ignore (default=[]) do not differentiate against the listed variables (identified by their position index),
useful if you are not interested in having the derivative of one of several variables in init.

3.2 Output

A function, evaluated in the same module that func is from and returning a tuple containing the expression value and
the derivative at first, second , etc.. order.

3.3 Usage

rdiff takes a function defined with the same subset of Julia statements (assigments, getindex, setindex!, for loops,
function calls) as the Expression variant of rdiff () and transforms it into another function whose call will return
the derivatives at all orders between 0 and the order specified:

ReverseDiffSource Documentation, Release 0.1

julia> rosenbrock(x) = (1 - x[1])"2 + 100(x[2] - x[1]"2)"2 # function to be derived
julia> rosen2 = rdiff (rosenbrock, (Vector{Float64},), order=2) # orders up to 2
(anonymous function)
julia> rosen2([1,2])
(100, [-400.0,200.07,
2x2 Array{Float64,2}:
402.0 -400.0
-400.0 200.0)

The generated function will attempt to remove all uneeded calculations (e.g. x + 0) and factorize repeated function
calls as much as possible.

All the variables appearing in the init argument are considered as the expression’s arguments and a derivative is
calculated for it (and cross derivatives if order is >= 2), unless they are listed in the ‘‘ignore‘‘ argument.

For orders >= 2 only a single variable, of type Real or Vector, is allowed. For orders 0 and 1 variables can be of
type Real, Vector or Matrix and can be in an unlimited number. If you are dealing with a function of several (scalar)
variables you will have you aggregate them into a vector (as in the example above).

3.4 Limitations

* The function should have a single return statement positioned at the end. Functions exiting before the end
(conditionally or not) cannot be differentiated.

All variables should be type-stable (not change from a scalar to a vector for example).

* Only a limited set of Julia semantics are supported at this stage. Some frequently used statements such as
comprehensions, if else, while loops cannot be used in the expression.

* Mutating functions cannot be used (with the exception of setindex! and setfield!).

10 Chapter 3. Calling rdiff () with a function

CHAPTER 4

Defining new functions : @deriv_rule ()

ReverseDiffSource comes with the derivations instructions for a limited set of functions such as *, +, /, transpose,
exp, log, Youcan ‘teach’ the package derivation methods for new functions with the macro call @deriv_rule:

‘@deriv_rule ex::Expr var::Symbol rule::Expr

4.1 Arguments

ex is the function signature, with each argument specified
var is the symbol of the argument you derive for.

rule is an expression to calculate the value to be added to the derivative accumulator for variable var.

4.2 Usage

rule should contain an expression that can be parsed by ReverseDiffSource (syntax limitations mentionned in previ-
ous chapter apply here). All symbols in it should either be one of the arguments in the function signature or the special
symbol ds that represents the derivative accumulator of the function.

Julia’s multiple dispatch rules apply to the definition : you can define different rules for a given function depending on
the type of its arguments:

@deriv_rule * (x::Real , y::Real) vy X * ds
@deriv_rule *(x::Real , y::AbstractArray) vy x .x ds
@deriv_rule x (x::AbstractArray, y::Real) y sum(x .*x ds)
@deriv_rule x(x::AbstractArray, y::AbstractArray) vy x' % ds

4.3 Example

Suppose you defined a function foo (x):

| foo(x) = log(l+sin(x))

This function is in turn used in the expression you want to derive:

\ex = :(2 ~ foo(x))

11

ReverseDiffSource Documentation, Release 0.1

Define the derivation of foo by its argument:

@deriv_rule foo (x) X cos(x) / (1 + sin(x)) =x ds

You can now derive ex:

julia> rdiff(:(2 »~ foo(x)) , x=1)
: (begin
_tmpl = 2"foo (x)
(_tmpl, ((cos(x) / (1.0 + sin(x))) =*
end)

(0.6931471805599453_tmpl),))

12 Chapter 4. Defining new functions : @deriv_rule()

CHAPTER 5

Working with composite types

When encountering a composite type, ReverseDiffSource builds a Vector {Any} to hold its derivative accumulator.
Its structure is derived from the fields of the composite type: Float for a Real number, an array of Floats for Arrays, or
another Vector {Any} if the field is a type. No special declaration has to be made beforehand to ReverseDiffSource.

However you do need to declare how each function using the composite type changes its derivative accumulator.

Suppose you have type Bar defined as:

type Bar
b4

Y
end

And an associated function norm (z: :Bar):

‘norm(z::Bar) = Z.X*Z.X + Z.y*z.y ‘

And finally an expression to derive making use of Bar and norm () :

’ex = :(z = Bar(2”a, sin(a)) ; norm(z)) ‘

You need to declare how both the constructor Bar and the function norm behave regarding the derivative accumulator
(which will be a 2 element vector of type Any for the two fields x and‘‘y**):

@deriv_rule Bar(x,y) x ds[1l] # Derivative accumulator of x is increased by ds[1]
@deriv_rule Bar(x,y) y ds[2] # Derivative accumulator of y is increased by ds[2]
@deriv_rule norm(z::Bar) z Any[2%z.x*xds , 2xz.y*ds] # Note : produces a 2-vector sgince z is a |

We are now ready to derive:

julia> res = rdiff (ex, a=0.)
julia> Qeval df (a) = S$Sres

julia> df (1)
(4.708073418273571,6.454474871305244)

13

ReverseDiffSource Documentation, Release 0.1

14 Chapter 5. Working with composite types

CHAPTER 6

ReverseDiffSource internals

All the core of the functions in the package (differentiation, removal of neutral statements, factorization of identical
calls) rely on 2 structures:

1. The ExNode composite type that represents either:
* asingle operation (a function call)

* an external reference (a variable that can be a parameter for derivation or a reference to a
variable outside the scope of the expression)

* aconstant

ExNodes have parents which are typically the arguments of the function. Collectively they make a DAG but with several a

* the order of arguments (parent nodes) is significant (a ~ b is notthe sameasb * a)

* there needs to be additionnal ordering information as statements not related sometimes need to
execute in a specific order, this information is in the precedence field.

2. The ExGraph composite type that stores
¢ ExNodes in a vector (in the order of execution),
* information on how to map ExNodes to variable names (used and set),

* and optionnaly information on how to map nodes to ‘outer’ nodes. This last mapping is
necessary when the ExGraph is embedded in another parent graph (for example the inner
scope of for loops is represented as a subgraph).

6.1 Showing the code graph

Starting from an expression, it is possible to have a dump of the nodes composing its equivalent graph with the
(unexported) tograph () call:

ex = quote
a=1+x
2 % exp(-a)
end

g = ReverseDiffSource.tograph (ex)

node | symbol | ext ? | type | parents | precedence | main | value

15

ReverseDiffSource Documentation, Release 0.1

R P O oo Jo b wNRE

= O

nothing <<

constant]
external]
calll]
constant]
call]
calll]
call]
constant]
constant]
constant]
1

constant

Float64
Floato4
Floato64
Float64
Floato4
Floato64
Float64
Floato4
Floato64
Float64
Floato64

Additionnaly, the plot () function (also unexported) will generate a GrapViz compatible graph description :

using GraphViz

Should produce :

Graph(ReverseDiffSource.plot(g))

16

Chapter 6. ReverseDiffSource internals

ReverseDiffSource Documentation, Release 0.1

|
+
<
- a
exp 2
*

nothing

6.1. Showing the code graph 17

ReverseDiffSource Documentation, Release 0.1

18 Chapter 6. ReverseDiffSource internals

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

19

	Installation
	The main function : rdiff()
	Arguments
	Output
	Usage
	Limitations

	Calling rdiff() with a function
	Arguments
	Output
	Usage
	Limitations

	Defining new functions : @deriv_rule()
	Arguments
	Usage
	Example

	Working with composite types
	ReverseDiffSource internals
	Showing the code graph

	Indices and tables

